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Commentary

Amyloid-�: a (life) preserver for the brain
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For nearly two decades, the amyloid-� hypothesis[22]
has dominated the field of Alzheimer’s disease (AD) and
during that time, massive efforts have focused on the role
of amyloid-� in the pathogenesis of the disease. Given
such focus, it is truly unfortunate that it is still unclear
whether amyloid-� is either necessary or sufficient for the
frank development of AD or whether amyloid-� causes the
associated neurodegeneration or behavioral and cognitive
deficits that accompany the disease. Therefore, it is perhaps
long overdue that we in the field consider other views of
amyloid-�, views which involve more complex relation-
ships and that are more meaningful than merely classifying
amyloid-�, and its isoforms, as either irrelevant (something
to be dismissed) or all encompassing (the origin of AD). In
this regard, a number of research groups have begun to ques-
tion the supremacy of the amyloid-� hypothesis and, with
this, the pendulum may now have swung completely in the
opposite direction, with many now considering amyloid-�
to be a protective consequence to an underlying disease
mechanism. Notably, the same is true of the other major
proteinaceous lesions of the disease, i.e. neurofibrillary tan-
gles, which many also consider protective[16,25]. Viewing
the known lesions of AD as a compensatory response places
them in an environment that is both adaptive and protective,
and it is clear that without some compensatory change to
insults, the brain, arguably the most vital organ in the body,
would certainly not survive long and certainly not for the
protracted time as seen in AD.

In questioning the “Church of the Holy Amyloid”[9],
researchers have started a dialogue that is challenging the
dogma surrounding the proposed toxicity of amyloid-�.
In the accompanying issue, Robinson and Bishop outline
an alternative to the amyloid-� hypothesis, which sup-
ports our previous assertion that amyloid-� is protective
[9,17,19,24,25]. The authors maintain that amyloid-� is
produced normally to bind neurotoxic solutes, such as metal
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ions, and that subsequent precipitation into plaques is an
efficient means of presentation to phagocytic cells. Further,
they elucidate some of the predictions of the amyloid-� hy-
pothesis that are inconsistent with the experimental data and
much of the cited evidence provides equal support for alter-
native roles for amyloid-�. The viewpoints that they present
are consistent with the neuroprotective properties that we,
and others, have previously described[5,9,15–19,24,25].

In support of brain protection by amyloid-�, it is
notable that amyloid-� has many physiological roles.
These pleiotrophic effects of amyloid-� are numerous,
some of which include redox-active metal sequestration
[1,2,10,20,23], superoxide dismutase-like activity[6,7],
and as an acute phase reactant protein (reviewed in[3]).
Further, amyloid-� is upregulated by many forms of stress,
including injury and head trauma, and as such may be a
response to oxidative challenges in these conditions[9].
Indeed, amyloid-� burden has been shown to be inversely
correlated with oxidative stress markers[15,16] suggesting
that amyloid-� may have antioxidant effects[6]. Such metal
sequestering properties of amyloid-� also explain the in situ
finding that soluble amyloid-� levels are inversely correlated
with synaptic loss[13]. Finally, it is important to note that
amyloid-� is neurotrophic at low (nM) concentrations[28].

There is increasing evidence that amyloid-�, and its iso-
forms, may function as a trap or sink, as Robinson and
Bishop note. This would likely serve an analogous func-
tion in the brain similar to that of albumin in the systemic
circulation, which can bind metals, drugs, metabolites
and proteins[11]. Accumulating evidence suggests that
amyloid-� also binds cholesterol, which may play a role
in the pathogenesis of AD[14]. Notably, serum cholesterol
increases with advancing age and diet-induced hypercholes-
terolemia enhances amyloid-� accumulation accompanied
by microgliosis in vivo[26,27]. Ultimately, the processes of
sequestration, oxidative stress, and the resulting inflamma-
tion, accumulate over time to result in the neurodegenera-
tion seen in AD and other disorders. Concurrently, multiple
compensatory mechanisms become activated and are aimed
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Fig. 1. Amyloid-� (A�) life preservers afford protection to neurons adrift in a cauldron of oxidative stress.

at arresting neurodegeneration[17,25]. One of the major
players in this opera is amyloid-� (Fig. 1).

In ending, the therapeutic relevance of amyloid-� is im-
portant to discuss since it is widely assumed that the removal
of amyloid-� plaques would be a beneficial treatment for
AD and restore cognition[21]. However, such a proposed
return to cognition may have other barriers, namely, those of
concomitant cytokine stress, oxidative stress, inflammation,
autoimmunity and imbalances in amyloid-� concentration
at necessary sites of action. Cytokine stress would most
likely accompany deposit clearance by microglia activation,
through the complement cascade, or through the acute-phase
response. In this regard, products of inflammatory reactions
such as complement proteins, adhesion molecules and other
cytokines are neurotoxic[9]. As the recent suspension of
phase II clinical trials in France of the amyloid-� vaccine
has shown, inflammation is, in fact, a real problem. This
event also calls into question the validity of the amyloid-�
vaccine and ties into our understanding of the function
of amyloid-�. Finally, soluble amyloid-� components are
necessary to maintain substrate pools for future protection
or other actions. The potential imbalance in amyloid-�
concentration between the cerebrospinal fluid and that of
the neuropil[4,8,12]may lead to unforeseen consequences,
which could feed forward dementia rather than reversing it
[17,24,25]. Since sensitivity of the neuronal environment to

insults increases with advancing age, it is very likely that
the most important parameter in the development of AD
involves mechanisms, e.g. oxidative stress, strongly associ-
ated with aging[9]. In this regard, individuals predisposed
to AD represent an already declining system and amyloid-�
serves as a life preserver to neurons that are surrounded by
a sea of oxidative stress(Fig. 1).
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